Feedback regulation via AMPK and HIF-1 mediates ROS-dependent longevity in Caenorhabditis elegans.

نویسندگان

  • Ara B Hwang
  • Eun-A Ryu
  • Murat Artan
  • Hsin-Wen Chang
  • Mohammad Humayun Kabir
  • Hyun-Jun Nam
  • Dongyeop Lee
  • Jae-Seong Yang
  • Sanguk Kim
  • William B Mair
  • Cheolju Lee
  • Siu Sylvia Lee
  • Seung-Jae Lee
چکیده

Mild inhibition of mitochondrial respiration extends the lifespan of many species. In Caenorhabditis elegans, reactive oxygen species (ROS) promote longevity by activating hypoxia-inducible factor 1 (HIF-1) in response to reduced mitochondrial respiration. However, the physiological role and mechanism of ROS-induced longevity are poorly understood. Here, we show that a modest increase in ROS increases the immunity and lifespan of C. elegans through feedback regulation by HIF-1 and AMP-activated protein kinase (AMPK). We found that activation of AMPK as well as HIF-1 mediates the longevity response to ROS. We further showed that AMPK reduces internal levels of ROS, whereas HIF-1 amplifies the levels of internal ROS under conditions that increase ROS. Moreover, mitochondrial ROS increase resistance to various pathogenic bacteria, suggesting a possible association between immunity and long lifespan. Thus, AMPK and HIF-1 may control immunity and longevity tightly by acting as feedback regulators of ROS.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inhibition of Respiration Extends C. elegans Life Span via Reactive Oxygen Species that Increase HIF-1 Activity

A mild inhibition of mitochondrial respiration extends the life span of many organisms, including yeast, worms, flies, and mice, but the underlying mechanism is unknown. One environmental condition that reduces rates of respiration is hypoxia (low oxygen). Thus, it is possible that mechanisms that sense oxygen play a role in the longevity response to reduced respiration. The hypoxia-inducible f...

متن کامل

Regulation of life span by mitochondrial respiration: the HIF-1 and ROS connection

A mild reduction in mitochondrial respiration extends the life span of many species, including C. elegans. We recently showed that hypoxia-inducible factor 1 (HIF-1) is required for the acquisition of a long life span by mutants with reduced respiration in C. elegans. We suggested that increased levels of reactive oxygen species (ROS) produced in the respiration mutants increase HIF-1 activity ...

متن کامل

An AMPK-FOXO Pathway Mediates Longevity Induced by a Novel Method of Dietary Restriction in C. elegans

BACKGROUND Dietary restriction (DR) is the most effective environmental intervention to extend lifespan in a wide range of species. However, the molecular mechanisms underlying the benefits of DR on longevity are still poorly characterized. AMP-activated protein kinase (AMPK) is activated by a decrease in energy levels, raising the possibility that AMPK might mediate lifespan extension by DR. ...

متن کامل

HIF-1–dependent regulation of lifespan in Caenorhabditis elegans by the acyl-CoA–binding protein MAA-1

In yeast, the broadly conserved acyl-CoA-binding protein (ACBP) is a negative regulator of stress resistance and longevity. Here, we have turned to the nematode C. elegans as a model organism in which to determine whether ACBPs play similar roles in multicellular organisms. We systematically inactivated each of the seven C. elegans ACBP paralogs and found that one of them, maa-1 (which encodes ...

متن کامل

Insulin/IGF-1 and Hypoxia Signaling Act in Concert to Regulate Iron Homeostasis in Caenorhabditis elegans

Iron plays an essential role in many biological processes, but also catalyzes the formation of reactive oxygen species (ROS), which can cause molecular damage. Iron homeostasis is therefore a critical determinant of fitness. In Caenorhabditis elegans, insulin/IGF-1 signaling (IIS) promotes growth and reproduction but limits stress resistance and lifespan through inactivation of the DAF-16/FoxO ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 111 42  شماره 

صفحات  -

تاریخ انتشار 2014